Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 24(1): 29, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433185

RESUMO

The African buffalo, Syncerus caffer, is a key species in African ecosystems. Like other large herbivores, it plays a fundamental role in its habitat acting as an ecosystem engineer. Over the last few centuries, African buffalo populations have declined because of range contraction and demographic decline caused by direct or indirect human activities. In Mozambique, historically home to large buffalo herds, the combined effect of colonialism and subsequent civil wars has created a critical situation that urgently needs to be addressed. In this study, we focused on the analysis of genetic diversity of Syncerus caffer caffer populations from six areas of Mozambique. Using genome-wide SNPs obtained from ddRAD sequencing, we examined the population structure across the country, estimated gene flow between areas under conservation management, including national reserves, and assessed the inbreeding coefficients. Our results indicate that all studied populations of Syncerus caffer caffer are genetically depauperate, with a high level of inbreeding. Moreover, buffaloes in Mozambique present a significant population differentiation between southern and central areas. We found an unexpected genotype in the Gorongosa National Park, where buffaloes experienced a dramatic population size reduction, that shares a common ancestry with southern populations of Catuane and Namaacha. This could suggest the past occurrence of a connection between southern and central Mozambique and that the observed population structuring could reflect recent events of anthropogenic origin. All the populations analysed showed high levels of homozygosity, likely due to extensive inbreeding over the last few decades, which could have increased the frequency of recessive deleterious alleles. Improving the resilience of Syncerus caffer caffer in Mozambique is essential for preserving the ecosystem integrity. The most viable approach appears to be facilitating translocations and re-establishing connectivity between isolated herds. However, our results also highlight the importance of assessing intraspecific genetic diversity when considering interventions aimed at enhancing population viability such as selecting suitable source populations.


Assuntos
Bison , Búfalos , Humanos , Animais , Búfalos/genética , Ecossistema , Endogamia , Moçambique
2.
Animals (Basel) ; 13(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36766275

RESUMO

The Tuscan Archipelago is one of the most ancient and ecologically heterogeneous island systems in the Mediterranean. The biodiversity of these islands was strongly shaped by the Pliocene and Pleistocene sea regressions and transgression, resulting in different waves of colonization and isolation of species coming from the mainland. The Italian wall lizard, Podarcis siculus, is present on the following islands of the Tuscan Archipelago: Elba, Giglio, Giannutri, Capraia, Montecristo and Cerboli. The species in the area displays a relatively high morphological variability that in the past led to the description of several subspecies. In this study, both the genetic and morphological diversity of P. siculus of the Tuscan Archipelago were investigated. Specifically, the meristic characters and the dorsal pattern were analyzed, while the genetic relationships among these populations were explored with mtDNA and microsatellite nuclear markers to reconstruct the colonization history of the Archipelago. Our results converge in the identification of at least two different waves of colonization in the Archipelago: Elba, and the populations of Cerboli and Montecristo probably originate from historical introductions from mainland Tuscany, while those of Giglio and Capraia are surviving populations of an ancient lineage which colonized the Tuscan Archipelago during the Pliocene and which shares a common ancestry with the P. siculus populations of south-eastern Italy. Giannutri perhaps represents an interesting case of hybridization between the populations from mainland Tuscany and the Giglio-Capraia clade. Based on the high phenotypic and molecular distinctiveness of this ancient clade, these populations should be treated as distinct units deserving conservation and management efforts as well as further investigation to assess their taxonomic status.

3.
Genet Sel Evol ; 53(1): 48, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078254

RESUMO

BACKGROUND: During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. RESULTS: Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. CONCLUSIONS: This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle.


Assuntos
Bovinos/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Distribuição Animal , Animais , Teorema de Bayes , Evolução Molecular , Frequência do Gene
4.
Curr Zool ; 66(5): 527-538, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33293931

RESUMO

Chromosomal evolution is widely considered an important driver of speciation because it can promote the establishment of reproductive barriers. Karyotypic reorganization is also expected to affect the mean phenotype, as well as its development and patterns of phenotypic integration, through processes such as variation in genetic linkage between quantitative trait loci or between regulatory regions and their targets. Here we explore the relationship between chromosomal evolution and phenotypic integration by analyzing a well-known house mouse parapatric contact zone between a highly derived Robertsonian (Rb) race (2n = 22) and populations with standard karyotype (2n = 40). Populations with hybrid karyotypes are scattered throughout the hybrid zone connecting the two parental races. Using mandible shape data and geometric morphometrics, we test the hypothesis that patterns of integration progressively diverge from the "normal" integration pattern observed in the standard race as they accumulate Rb fusions. We find that the main pattern of integration observed between the posterior and anterior part of the mandible can be largely attributed to allometry. We find no support for a gradual increase in divergence from normal patterns of integration as fusions accumulate. Surprisingly, however, we find that the derived Rb race (2n = 22) has a distinct allometric trajectory compared with the standard race. Our results suggest that either individual fusions disproportionately affect patterns of integration or that there are mechanisms which "purge" extreme variants in hybrids (e.g. reduced fitness of hybrid shape).

5.
BMC Evol Biol ; 19(1): 179, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31510915

RESUMO

BACKGROUND: Understanding the mechanisms promoting or constraining morphological diversification within clades is a central topic in evolutionary biology. Ecological transitions are of particular interest because of their influence upon the selective forces and factors involved in phenotypic evolution. Here we focused on the humerus and mandibles of talpid moles to test whether the transition to the subterranean lifestyle impacted morphological disparity and phenotypic traits covariation between these two structures. RESULTS: Our results indicate non-subterranean species occupy a significantly larger portion of the talpid moles morphospace. However, there is no difference between subterranean and non-subterranean moles in terms of the strength and direction of phenotypic integration. CONCLUSIONS: Our study shows that the transition to a subterranean lifestyle significantly reduced morphological variability in talpid moles. However, this reduced disparity was not accompanied by changes in the pattern of traits covariation between the humerus and the mandible, suggesting the presence of strong phylogenetic conservatism within this pattern.


Assuntos
Ecossistema , Toupeiras/anatomia & histologia , Pontos de Referência Anatômicos , Animais , Úmero/anatomia & histologia , Análise dos Mínimos Quadrados , Estilo de Vida , Mandíbula/anatomia & histologia , Toupeiras/classificação , Fenótipo , Filogenia , Análise de Componente Principal , Característica Quantitativa Herdável
6.
BMC Evol Biol ; 19(1): 106, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113358

RESUMO

BACKGROUND: Sparid fishes of the genus Diplodus show a complex life history. Juveniles have adaptations well suited to life in the water column. When fishes recruit into the adult population, individuals develop a radically differentiated shape that reflects their adaptation to the new benthic environment typical of the adult. A comparative analysis of ontogenetic trajectories was performed to assess the presence of divergence in the developmental pattern. By using a geometric morphometric approach, we investigated the pattern of shape variation across ontogenetic stages that span from early settlement to the adult stage in four species of the genus Diplodus. Landmarks were collected on the whole body of fishes to quantify the phenotypic variation along two well defined life stages, i.e. juvenile and adult. A comparative analysis of ontogenetic trajectories was performed to assess the presence of divergence in the developmental pattern. Subsequently, we investigated the patterns of integration and modularity as proxy for the alteration of the developmental processes. This have allowed to give an insight in morphological developmental patterns across ecologically and ontogenetically differentiated life stages and to investigate the process leading to the adult shape. RESULT: Our results suggest that the origin of morphological novelties in Diplodus spp. arise from shifts of the ontogenetic trajectories during development. During the settlement phase, the juveniles' morphological shapes converge towards similar regions of the morphospace. When the four species approach the transition between settlement and recruitment, we observe the lowest level of inter- and intra-specific disparity. After this transition we detect an abrupt shift of ontogenetic trajectories, i.e. the path taken by species during development, that led to highly divergent adult phenotypes. DISCUSSION: We suggest that the evolution of new ecomorphologies, better suited to exploit different niches (pelagic vs. benthonic) and reduce inter-specific competition in Diplodus spp., are related to the shift in the ontogenetic trajectory that in turn is associated to changes in modularity and integration pattern.


Assuntos
Evolução Biológica , Perciformes/crescimento & desenvolvimento , Pontos de Referência Anatômicos , Animais , Geografia , Ilhas , Perciformes/anatomia & histologia , Perciformes/genética , Fenótipo , Filogenia , Análise de Componente Principal
7.
BMC Evol Biol ; 17(1): 6, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056768

RESUMO

BACKGROUND: The current distribution of genetic diversity is the result of a vast array of microevolutionary processes, including short-term demographic and ecological mechanisms and long-term allopatric isolation in response to Quaternary climatic fluctuations. We investigated past processes that drove the population differentiation and spatial genetic distribution of the Italian wall lizard Podarcis siculus by means of sequences of mitochondrial cytb (n = 277 from 115 localities) and nuclear mc1r and ß-fibint7genes (n = 262 and n = 91, respectively) from all its distribution range. The pattern emerging from the genetic data was compared with current and past (last glacial maximum) species distribution modeling (SDM). RESULTS: We identified seven deeply divergent parapatric clades which presumably remained isolated in different refugia scattered mainly throughout the Tyrrhenian coast. Conversely, the Adriatic coast showed only two haplogroups with low genetic variability. These results appear to agree with the SDM prediction at the last glacial maximum (LGM) indicating a narrow area of habitat suitability along the Tyrrhenian coast and much lower suitability along the Adriatic one. However, the considerable land exposure of the Adriatic coastline favored a glacial colonization of the Balkan Peninsula. CONCLUSIONS: Our population-level historical demography showed a common trend consistent with glacial expansions and regional persistence during the last glacial maximum. This complex genetic signature appears to be inconsistent with the expectation of the expansion-contraction model and post-LGM (re)colonizations from southern refugia. Hence it is one of an increasing number of cases in which these assumptions are not met, indicating that long-term fragmentation and pre-LGM events such as glacial persistence were more prominent in shaping genetic variation in this temperate species.


Assuntos
Lagartos/genética , Animais , Evolução Biológica , Núcleo Celular/genética , Mudança Climática , DNA Mitocondrial/genética , Ecossistema , Variação Genética , Haplótipos , Camada de Gelo , Itália , Filogenia , Filogeografia
8.
Ecol Evol ; 6(5): 1353-62, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26855768

RESUMO

The Western European house mouse, Mus musculus domesticus, is well-known for the high frequency of Robertsonian fusions that have rapidly produced more than 50 karyotipic races, making it an ideal model for studying the mechanisms of chromosomal speciation. The mouse mandible is one of the traits studied most intensively to investigate the effect of Robertsonian fusions on phenotypic variation within and between populations. This complex bone structure has also been widely used to study the level of integration between different morphogenetic units. Here, with the aim of testing the effect of different karyotypic assets on the morphology of the mouse mandible and on its level of modularity, we performed morphometric analyses of mice from a contact area between two highly metacentric races in Central Italy. We found no difference in size, while the mandible shape was found to be different between the two Robertsonian races, even after accounting for the genetic relationships among individuals and geographic proximity. Our results support the existence of two modules that indicate a certain degree of evolutionary independence, but no difference in the strength of modularity between chromosomal races. Moreover, the ascending ramus showed more pronounced interpopulation/race phenotypic differences than the alveolar region, an effect that could be associated to their different polygenic architecture. This study suggests that chromosomal rearrangements play a role in the house mouse phenotypic divergence, and that the two modules of the mouse mandible are differentially affected by environmental factors and genetic makeup.

9.
J Morphol ; 276(10): 1157-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26134243

RESUMO

The enigmatic Early Miocene fossorial mammal Mesoscalops montanensis shows one of the most modified humeri among terrestrial mammals. It has been suggested, on qualitative considerations, that this species has no extant homologues for humerus kinematics and that, functionally, the closest extant group is represented by Chrysochloridae. We combine here three dimensional geometric morphometrics, finite element analysis and phylogenetic comparative methods to explore the shape and mechanical stress states of Mesoscalops montanensis as well as of extant and extinct Talpidae and Chrysochloridae under realistic digging simulations. Evolutionary convergence analyses reveal that the shape of Mesoscalops montanensis represents a unique morphology in the context of fossorial mammals and that its functional performance, albeit superficially similar to that of extant Chrysochloridae, still represents a nonconvergent optimum for adaptation to digging.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Fósseis/anatomia & histologia , Toupeiras/anatomia & histologia , Animais , Fenômenos Biomecânicos , Úmero/anatomia & histologia
10.
Mol Ecol ; 20(24): 5313-27, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22097966

RESUMO

Many temperate species experienced demographic and range contractions in response to climatic changes during Pleistocene glaciations. In this study, we investigate the evolutionary history of the Tyrrhenian tree frog Hyla sarda, a species inhabiting the Corsica-Sardinia island system (Western Mediterranean basin). We used sequence analysis of two mitochondrial (overall 1229 bp) and three nuclear (overall 1692 bp) gene fragments to assess the phylogeography and demographic history of this species, and species distribution modelling (SDM) to predict its range variation over time. Phylogeographic, historical demographic and SDM analyses consistently indicate that H. sarda does not conform to the scenario generally expected for temperate species but rather underwent demographic and range expansion mostly during the last glacial phase. Palaeogeographic data and SDM analyses suggest that such expansion was driven by the glaciation-induced increase in lowland areas during marine regression. This unusual scenario suggests that at least some temperate species may not have suffered the adverse effects of glacial climate on their population size and range extent, owing to the mitigating effects of other glaciations-induced palaeoenvironmental changes. We discuss previous clues for the occurrence of such a scenario in other species and some possible challenges with its identification. Early phylogeographic literature suggested that responses to the Pleistocene glacial-interglacial cycles were expected to vary among species and regions. Our results point out that such variation may have been greater than previously thought.


Assuntos
Evolução Biológica , Ranidae/classificação , Ranidae/genética , Animais , Clima , DNA Mitocondrial/genética , Bases de Dados Genéticas , França , Variação Genética , Geografia , Haplótipos , Itália , Filogeografia , Densidade Demográfica , Análise de Sequência de DNA
11.
Evol Dev ; 12(6): 568-79, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21040423

RESUMO

The phylogenetic placement of Tomistoma and Gavialis crocodiles depends largely upon whether molecular or morphological data are utilized. Molecular analyses consider them as sister taxa, whereas morphological/paleontological analyses set Gavialis apart from Tomistoma and other crocodylian species. Here skull allometric trajectories of Tomistoma and Gavialis were contrasted with those of two longirostral crocodylian taxa, Crocodylus acutus and Mecistops cataphractus, to examine similarities in growth trajectories in light of this phylogenetic controversy. Entire skull shape and its two main modules, rostrum and postrostrum, were analyzed separately. We tested differences for both multivariate angles between trajectories and for shape differences at early and late stages of development. Based on a multivariate regression of shape data and size, Tomistoma seems to possess a peculiar rate of growth in comparison to the remaining taxa. However, its morphology at both juvenile and adult sizes is always closer to those of Brevirostres crocodylians, for the entire head shape, as well as the shape of the postrostrum and rostrum. By contrast, the allometric trajectory of Gavialis always begins and ends in a unique region of the multidimensional morphospace. These findings concur with a morphological hypothesis that places Gavialis separate from Brevirostres, and Tomistoma closer to other crocodylids, and provides an additional, and independent, data set to inform on this ongoing phylogenetic discussion.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/crescimento & desenvolvimento , Modelos Biológicos , Crânio/anatomia & histologia , Crânio/crescimento & desenvolvimento , Jacarés e Crocodilos/classificação , Animais , Filogenia
12.
C R Biol ; 333(9): 680-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20816648

RESUMO

Size and shape changes in the skull of the genus Gerbillus were investigated using geometric morphometrics. Six species from Tunisia were studied (G. gerbillus, G. campestris, G. nanus, G. tarabuli, G. simoni and G. latastei). Statistical analyses of shape variability allowed us to discriminate three morphological groups which are congruent with the three groups suggested by previous morphological and molecular studies. However, our results contrast with previous molecular investigations. In fact, according to results obtained by the use of principal component analysis, canonical variate analysis and UPGMA, we found a higher degree of divergence between the subgenus Dipodillus and the other two subgenera Gerbillus and Hendecapleura. This fact suggests that the morphometric differences observed among species within the genus Gerbillus are not mainly related to phylogeny. To reconciliate the molecular and morphological approaches, we propose a hypothesis of differential rates of phenotypic evolution in the genus Gerbillus. In this view, the species belonging to the subgenus Dipodillus evolved apomorphic features of the skull likely related to a higher degree of habitat specialization. By contrast, the more generalist Gerbillus and Hendecapleura subgenera show less differentiated plesiomorphic morphology.


Assuntos
Gerbillinae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Cefalometria , Análise por Conglomerados , Feminino , Masculino , Filogenia , Análise de Componente Principal , Caracteres Sexuais , Especificidade da Espécie , Tunísia
13.
Mol Phylogenet Evol ; 56(2): 513-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20412863

RESUMO

Although gerbils forms an important component of the mammalian fauna of arid and semi-arid area, the taxonomic and phylogenetic relationship within the species of the genus Gerbillus are still ambiguous. The present paper introduces findings based on the whole cytochrome b (1140 bp) mitochondrial genes of seven species (Gerbillus campestris, G. latastei, G. nanus, G. tarabuli, G. gerbillus, G. simoni and G. nigeriae) six of which are present in Tunisia. Our results show that all the Gerbillus species are monophyletic. Moreover, molecular phylogeny rejects the genus rank for the taxon Dipodillus. Gebillus nanus, a species belonging to the subgenus Hendecapleura, early diverged from the other species which are divided into two clades: the subgenus Dipodillus, including G. campestris and G. simoni and the subgenus Gerbillus including G. gerbillus, G. nigeriae, G. tarabuli and G. latastei. These results are congruent with morphological and karyological evidences. According to molecular clock, the appearance of the genus Gerbillus coincides with the Miocene-Pliocene expansion of African arid biomes. Extensive intraspecific chromosomal changes evolved in a relatively narrow lapse of time, like in the case of G. latastei, allowing the fixations of different chromosomal variants due to pericentric inversion.


Assuntos
Evolução Molecular , Gerbillinae/genética , Filogenia , Animais , Teorema de Bayes , Citocromos b/genética , DNA Mitocondrial/genética , Genes Mitocondriais , Gerbillinae/classificação , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Tunísia
14.
Evolution ; 64(7): 2020-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20148956

RESUMO

The West European house mouse, Mus musculus domesticus, is a particularly suitable model to investigate the role of chromosomal rearrangements in reproductive isolation. In fact, it exhibits a broad range of chromosomal polymorphism due to Robertsonian (Rb) fusions leading to various types of contact zones between different chromosomal races. In the present study, we analyzed a parapatric contact in central Italy between the Cittaducale chromosomal race (CD: 2n= 22) and the surrounding populations with standard karyotype (2n= 40) to understand if Rb fusions play a causative role in speciation. One hundred forty-seven mice from 17 localities were genotyped by means of 12 microsatellite loci. A telomeric and a pericentromeric locus situated on six chromosome arms (four Rbs and one telocentric) were selected to detect differences in the amount of gene flow for each locus in different chromosomal positions. The analyses performed on the two subsets of loci show differences in the level of gene flow, which is more restricted near the centromeres of Rb chromosomes. This effect is less pronounced in the homozygotes populations settled at the border of the hybrid zone. We discuss the possible cause of the differential porosity of gene flow in Rbs considering "hybrid dysfunctions" and "suppressed recombination" models.


Assuntos
Aberrações Cromossômicas , Fluxo Gênico , Especiação Genética , Genética Populacional , Hibridização Genética , Animais , Centrômero/genética , Genótipo , Itália , Cariotipagem , Camundongos , Repetições de Microssatélites/genética , Modelos Genéticos , Especificidade da Espécie , Telômero/genética
15.
Genome ; 50(9): 787-95, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17893718

RESUMO

This paper describes a study of the 5S ribosomal RNA genes (5S rDNA) in a group of 6 species belonging to 4 genera of Mugilidae. In these 6 species, the relatively short 5S rDNA repeat units, generated by PCR and ranging in size from 219 to 257 bp, show a high level of intragenomic homogeneity of both coding and spacer regions (NTS-I). Phylogenetic reconstructions based on this data set highlight the greater phylogenetic and genetic diversity of Mugil cephalus and Oedalechilus labeo compared with the genera Liza and Chelon. Comparative sequence analysis revealed significant conservation of the short 5S rDNA repeat units across Chelon and Liza. Moreover, a second size class of 5S rDNA repeat units, ranging from roughly 800 to 1100 bp, was produced in the Liza and Chelon samples. Only short 5S rDNA repeat units were found in M. cephalus and O. labeo. The sequences of the long 5S rDNA repeat units, obtained in Chelon labrosus and Liza ramada, differ owing to the presence of 2 large insertion/deletions (indels) in the spacers (NTS-II) and show considerable sequence identity with NTS-I spacers. Interspecific sequence variation of NTS-II spacers, excluding the indels, is low. Southern-blot hybridization patterns suggest an intermixed arrangement of short and long repeat units within a single chromosome locus.


Assuntos
Genes de RNAr , Genoma , Filogenia , RNA Ribossômico 5S/genética , Smegmamorpha/genética , Animais , Sequência de Bases , Modelos Genéticos , Dados de Sequência Molecular , Alinhamento de Sequência , Smegmamorpha/classificação , Especificidade da Espécie
16.
Mol Phylogenet Evol ; 42(3): 797-806, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17113792

RESUMO

Gerbilliscus has recently been proposed as an endemic African rodent genus distinct from the Asian Tatera. A molecular phylogeny of the genus, including nine species from southern, western and eastern Africa, is presented here based on the analysis of the cytochrome b and 16S mitochondrial genes. With an adequate taxonomic sampling over a wide geographic range, we here provide a clear picture of the phylogenetic relationships between species and species groups in this genus. Three distinct clades were resolved, corresponding to major geographical subdivisions: an eastern clade that possibly diverged first, then a southern and a western clades which appeared later. We suggest two possible hypotheses concerning the dispersal of the genus across Africa, considering also the patterns of karyotypic variation. Finally, we discuss the taxonomic status of G. gambianus and the relationships between Gerbillurus and Gerbilliscus, as previous studies have suggested that the former should be included in the latter. Our data seem to support the synonymy of the two taxa and suggest that Gerbillurus and Gerbilliscus lineages diverged from a common ancestor appeared in eastern Africa.


Assuntos
Evolução Molecular , Genes Mitocondriais , Gerbillinae/genética , Filogenia , África , Animais , Especiação Genética , Variação Genética
17.
Mol Phylogenet Evol ; 35(3): 556-68, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15878125

RESUMO

The African gerbils of the genus Tatera are widespread and abundant throughout sub-Saharan Africa. There is still today a certain controversy concerning the taxonomy of these rodents and very few attempts have been made to assess their systematic relationships. The present paper introduces findings based on the partial sequences of cytochrome b (495 bp) and the 16S rRNA (469 bp) mitochondrial genes of six (T. robusta, T. nigricauda, T. vicina, T. leucogaster, T. valida, and T. kempi) species together with two additional taxa. We also report the karyotypes of T. vicina and T. leucogaster. We propose that T. vicina should be considered as a valid species and show the monophyly of the robusta species group, with the exclusion of T. leucogaster. Our results show there is a different chromosomal evolutionary pattern within the two major lineages, which is recognizable through molecular phylogenetics. One is characterized by karyotype stability and the other by a considerable number of chromosomal rearrangements. The lineage divergence coincides with the formation of the East African Rift. The processes that led to the origin of the East African species seem to be related to the subsequent climatic changes, which caused cyclic contraction and expansion of the savannah biomes. Furthermore, geological activities that characterized East Africa during Plio-Pleistocene may also have contributed to lineage divergence.


Assuntos
Cromossomos de Mamíferos/genética , Evolução Molecular , Variação Genética , Gerbillinae/genética , Filogenia , África , Animais , Sequência de Bases , Análise por Conglomerados , Primers do DNA , DNA Mitocondrial/genética , Geografia , Cariotipagem , Dados de Sequência Molecular , Análise de Sequência de DNA
18.
Hereditas ; 139(2): 81-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-15061808

RESUMO

Aethomys is a common and widespread rodent genus in the African savannas and grasslands. However, its systematics and taxonomy are still unclear as no study has covered the entire range. In fact it might not be a monophyletic genus and perhaps should be split into two subgenera, Micaelamys and Aethomys. In this paper, we present findings based on the cytogenetics and the entire cytochrome b sequence of two species from Zambia (A. kaiseri) and Tanzania (A. chrysophilus), and we compare them with the sequences of a South African species (A. namaquensis) and other allied muroid genera. Comparison of the banded chromosomes revealed complete G-band homology between the autosomes of the two species. However, the X and Y chromosomes clearly differ in size and in C- and G-banding, being much larger in A. kaiseri. Comparison of the cytochrome b sequences places the separation between A. kaiseri and A. chrysophilus at 4.49 Mya, a period of intense speciation in other African muroids. The resulting phylogeny strongly supports the idea of a paraphyletic group, suggesting the need to elevate the previously described subgenera to the genus rank.


Assuntos
Mapeamento Cromossômico , Muridae/genética , Animais , Sequência de Bases , Bandeamento Cromossômico , Citocromos b/genética , Primers do DNA , Feminino , Cariotipagem , Masculino , Muridae/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...